Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Immunol ; 13: 943510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059467

RESUMO

γδ T cells play important roles in immune responses by rapidly producing large quantities of cytokines. Recently, γδ T cells have been found to be involved in tissue homeostatic regulation, playing roles in thermogenesis, bone regeneration and synaptic plasticity. Nonetheless, the mechanisms involved in γδ T-cell development, especially the regulation of TCRδ gene transcription, have not yet been clarified. Previous studies have established that NOTCH1 signaling plays an important role in the Tcrg and Tcrd germline transcriptional regulation induced by enhancer activation, which is mediated through the recruitment of RUNX1 and MYB. In addition, interleukin-7 signaling has been shown to be required for Tcrg germline transcription, VγJγ rearrangement and γδ T-lymphocyte generation as well as for promoting T-cell survival. In this study, we discovered that interleukin-7 is required for the activation of enhancer-dependent Tcrd germline transcription during thymocyte development. These results indicate that the activation of both Tcrg and Tcrd enhancers during γδ T-cell development in the thymus depends on the same NOTCH1- and interleukin-7-mediated signaling pathways. Understanding the regulation of the Tcrd enhancer during thymocyte development might lead to a better understanding of the enhancer-dependent mechanisms involved in the genomic instability and chromosomal translocations that cause leukemia.


Assuntos
Receptores de Interleucina-7 , Fator de Transcrição STAT5 , Elementos Facilitadores Genéticos , Células Germinativas/metabolismo , Interleucina-7/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Interleucina-7/genética , Fator de Transcrição STAT5/metabolismo
2.
J Immunol ; 208(4): 910-928, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35082160

RESUMO

Enhancers activate transcription through long-distance interactions with their cognate promoters within a particular subtopologically associated domain (sub-TAD). The TCRα enhancer (Eα) is located at the sub-TAD boundary between the TCRα and DAD1 genes and regulates transcription toward both sides in an ∼1-Mb region. Analysis of Eα activity in transcribing the unrearranged TCRα gene at the 5'-sub-TAD has defined Eα as inactive in CD4-CD8- thymocytes, active in CD4+CD8+ thymocytes, and strongly downregulated in CD4+ and CD8+ thymocytes and αß T lymphocytes. Despite its strongly reduced activity, Eα is still required for high TCRα transcription and expression of TCRαß in mouse and human T lymphocytes, requiring collaboration with distant sequences for such functions. Because VαJα rearrangements in T lymphocytes do not induce novel long-range interactions between Eα and other genomic regions that remain in cis after recombination, strong Eα connectivity with the 3'-sub-TAD might prevent reduced transcription of the rearranged TCRα gene. Our analyses of transcriptional enhancer dependence during T cell development and non-T lineage tissues at the 3'-sub-TAD revealed that Eα can activate the transcription of specific genes, even when it is inactive to transcribe the TCRα gene at the 5'-sub-TAD. Hence distinct requirements for Eα function are necessary at specific genes at both sub-TADs, implying that enhancers do not merely function as chromatin loop anchors that nucleate the formation of factor condensates to increase gene transcription initiated at their cognate promoters. The observed different regulated Eα activity for activating specific genes at its flanking sub-TADs may be a general feature for enhancers located at sub-TAD boundaries.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Animais , Diferenciação Celular/genética , Mapeamento Cromossômico , Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Loci Gênicos , Humanos , Células Jurkat , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timócitos/imunologia , Timócitos/metabolismo
3.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187197

RESUMO

The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αß and γδ T lymphocytes. The TCRα, TCRß, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged. A correctly rearranged configuration is required for expression of a functional TCR chain. TCRs can take the form of one of three possible heterodimers, pre-TCR, TCRαß, or TCRγδ which drive thymocyte maturation into αß or γδ T lymphocytes. To pass from an unrearranged to a rearranged configuration, global and local three dimensional (3D) chromatin changes must occur during thymocyte development to regulate gene segment accessibility for V(D)J recombination. During this process, enhancers play a critical role by modifying the chromatin conformation and triggering noncoding germline transcription that promotes the recruitment of the recombination machinery. The different signaling that thymocytes receive during their development controls enhancer activity. Here, we summarize the dynamics of long-distance interactions established through chromatin regulatory elements that drive transcription and V(D)J recombination and how different signaling pathways are orchestrated to regulate the activity of enhancers to precisely control TCR gene expression during T-cell maturation.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Genes Codificadores dos Receptores de Linfócitos T/genética , Linfócitos T/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Elementos Facilitadores Genéticos/imunologia , Regulação da Expressão Gênica/imunologia , Genes Codificadores dos Receptores de Linfócitos T/imunologia , Humanos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Recombinação V(D)J/genética , Recombinação V(D)J/imunologia
4.
J Immunol ; 202(8): 2460-2472, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877169

RESUMO

Tcrd and Tcrg display identical developmental programs that depend on the activity of the enhancers Eδ and Eγ being "on" in pre-ß-selection thymocytes to activate transcription and V(D)J recombination of the unrearranged genes and "off" in post-ß-selection CD4+CD8+ double-positive thymocytes to inhibit transcription of the rearranged genes and avoid the expression of TCR δ- and TCR γ-chains in αß T lymphocytes. Eδ and Eγ activity depends on transcription factor binding to essential Runx and Myb sites and parallels that of Notch signaling. We performed Notch gain- and loss-of-function experiments and found that Notch signaling activates Tcrd and Tcrg transcription by favoring the recruitment of RUNX1 and MYB to the enhancers. Our results suggest that the dissociation of RUNX1 and MYB from Eδ and Eγ chromatin in double-positive thymocytes, which results in enhancer inactivation, is caused by decreased Notch signaling triggered by pre-TCR signaling, thereby deciphering the molecular mechanism of Tcrd and Tcrg silencing during ß-selection. These findings reveal a novel molecular mechanism for gene regulation via Notch signaling through the recruitment of RUNX1 and MYB to enhancer chromatin during thymocyte development.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/imunologia , Elementos Facilitadores Genéticos/imunologia , Proteínas Proto-Oncogênicas c-myb/imunologia , Receptores Notch/imunologia , Transdução de Sinais/imunologia , Timócitos/imunologia , Transcrição Gênica/imunologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Humanos , Células Jurkat , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myb/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores Notch/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...